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Abstract. Mexico is one of the main exporters of shrimp at international level.
The environmental quality in prawn ponds is essential for good production of
species. If there exists any change in one of the environmental parameters, and
this is not early controlled, it could generate instability into the pond, the
organisms will be stressed and as a result they can get sick, in some cases, the
sickness could be mortal. Nowadays, there is not software that attacks this
point. In this work, we create environmental variables patterns, such as
temperature, salinity, pH, dissolved oxygen and turbidity, and they are
recognized by a feedforward neural network. This patterns recognition makes
possible to diagnose and to present the trend of shrimp artificial habitat
behavior and to take actions of control and prevention.

1 Introduction

In the coastal zones, the fishing contributes to generate important gains. The
production can be affected by environmental factors, such as tropical storms, cyclones
or diseases. Artificial sowing of the species tries to intensify the amount of the
product and the quality in the same one.

Mexico is considered as the fourth producer at international level. Shrimp artificial
sowing is not simple, this species is very sensible and any change in its habitat as
much produces great negative effects in its growth as in its reproduction. The farms
that are dedicated to the culture of the shrimp have exclusively dedicated laboratories
to control the environment to generate a production greater.

The shrimp aquaculture in Mexico and the world has not advanced computational
systems to supervise the artificial habitat of the farms and laboratories. A
computational system of this type helps significantly to improve the environmental
conditions and to elevate the production and its quality [1], [2].

The main idea of this work is the creation of a system, which can help the
biologists to recognize patterns of problems and their evolution in shrimp aquaculture,
and thus to respond with greater rapidity against the negative effects.

Bad control on the shrimp artificial habitat produces organisms with the high stress
and as consequence losses in their defenses. It generate low nutrition, low
reproduction or worse still, they prearrange to acquire lethal diseases. The proposed
system helps to control this problem [3].
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The established hypotheses are the following ones:

1. It is possible and necessary to establish patterns of environmental variables
with nonlinear relationships to classify the artificial habitat state of shrimp.

2. A feedforward neural network, with a linear activation function for output
neurons, allows to recognize and to quantify the shrimp artificial habitat state,
which is given by environmental variables patterns.

2 Technical Support and Schemes of Operation

The main environmental variables are measured of automated way or introduced to a
computer by the operator, and these are the following ones:

Temperature (°c)
Dissolved oxygen (mg/L)
Salinity (g/L or ppt)

pH

Alkalinity (mg/L CaCOs)
Turbidity (cm)

Total ammonium (mg/L)

NowsrwN =

A distributed system [4], [5] is used in the automated measurement (pH,
temperature, Dissolved oxygen, etc.). An operator makes laboratory measurement
(Salinity, Alkalinity, Total ammonium, etc.). The Fig. 1 shows an installation for
shrimp aquaculture and the Fig. 2 presents a simplified scheme of the distributed

system.

Fig. 1 Example of an installation for shrimp aquaculture
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Fig. 2 Scheme of the distributed system

3 Patterns of environmental variables with nonlinear relationships

Environmental variables as pH, temperature, salinity, dissolved oxygen and turbidity
have an important effect in the suitable growth of the shrimps and influence in their
health. For example for Shrimp Maturation and Spawning [6], [7] almost all
hatcheries require availability of oceanic-quality water on a 24-h basis. Salinity and
temperature are the most important water parameters impacting production of shrimp
in the hatchery, and must be maintained in a narrow range, between 27 and 36 ppt
salinity and 28 C (82 F) plus or minus two degrees for most penaeids. These and other
important factors in the maturation and spawning of penaeid shrimp are discussed in
detail by Treece and Fox [8].
Parameters for tropical shrimp maturation and allowable ranges/24 hr [6]

Salinity:

27-36 ppt +/- 0.5

Temperature

28 C+/-2(80.5-84.2 F)

pH

7.8+/-0.2

Light

14L,10D

D.O. (Dissolved oxygen)

5 ppm
These values allow to create normal patterns. In general, these variables have
nonlinear relations, which have been observed and proven experimentally, although
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the equations that represent them have been formulated, which is very difficult [9].
We can represent these nonlinear relations of following way:

pH(0) = f(temp, sal,tur, alk) m

In general:
Habitat state (water quality) = f (temp,sal,tur,alk,do,1a,...) )
where:
/* nonlinear function; remp: temperature; sal: salinity; fur: turbidity; alk: alkalinity;
do: dissolved oxygen; ta: Total ammonium.

The patterns classification is made to recognize and to quantify two states within
the pool:

a) Normal: Everything is well.

b) Risk: One, some or all environmental variables are outside of the allowed
interval, which generates problems.

The neural network [10], [11] will have to recognize the state and to quantify it, in
others words, how normal or risky it is, which allows to find trend of the water
quality. The total ammonium only, can cause a danger state; therefore, this situation
is found by means of conditions if-else.

In Table 1 are the environmental variables of greater importance, the values and
the combinations of these, for which the pool is in a normal state, of risk or danger.

Table 1. States classification by means of the combination of environmental variables.

Environmental variables Range
Temperature 23-30°C
Salinity 15— 25 (mg/1)
pH 7.6 8.6
Dissolved oxygen 6—10 (mg/l)
Total ammonium Less than 0.1 (mg/])
Turbidity 35-45 (mg/D)
RISK
Temperature Greater than 30°
Salinity Greater than 25 (mg/l)
pH Less than 7.6 or greater than 8.6
Dissolved oxygen Less than 6 or greater than 10 (mg/])
Turbidity Less than 35 or greater than 45 (mg/l)
DANGER
Total ammonium Greater or equal than 0.1 (mg/l)
Dissolved oxygen Less than 3 (mg/])

The method determines if a danger state exists, and in such case it gives to the
present values of ammonium and oxygen. If a danger state does not exist, then the
neural network recognizes and quantifies the normal state or the risk state. In the three
situations, the user could consult the historical values of the environmental variables.
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These historical values (for example for pH) are defined as:
pH(t) = pH(k —n)T, pH(k—n+1)T, pH(k—n+2)T,..., pH (k) 3)

where:
pH(t): Historical value.
t: Time interval for the historical, defined for user.
k: Current sampling instant.
T: Sampling period.
n: Number of necessary samples for the historical, so that:
(n+ DT =1t (C))
Also, the system can calculate the historical average and variance, as:

s L k=n
ph = ph(i)/(n+1) )
i=k
and the variance, as:
k=n e
Vph=) (ph(i)— ph)* /(n+1) (6)

i=k

The user can solicit a trend analysis, linear or polynomial [12].

The classification of the real measurements in training patterns was made in farms
of test in several periods of sowing, and 400 patterns were used, which represent
different levels of normal state and different levels of risky state.

Total ammonium is considered more danger than others variables. A minimum
concentration of ammonia is enough for creating a danger state. The system recognize
a danger state with this variable only when the maximum level is reached, this is done
using an if-else programming and not with a neural network.

4. Neural network

Fig 3 presents the topology of better results for this application. The neural network
also is able to give a deviation of the centre of the state, in other words, the state what
so normal or risky is. This deviation allows to have historical of the classifications,
same that make possible to establish a trend of the evolution of the water quality or
artificial habitat, and the technologists can control better at shrimp habitat.

The neuron that recognizes the normal state gives the value of 1 if the state within
the pool is best, if this state is deteriorated, then neuron will give inferior values to 1,
and will go in reduction. In the same way, the neuron that recognizes the risk state
gives the value of -1 when the neuron of normal state is in 1, and will go in ascent if
the deterioration state increases. If the state within the pool is very deteriorated, then
the classification will be of risk and the neuron that recognizes the risk will give a
value of 1 (see Fig. 4). The Fig. 5 presents the performance in neural network
training.

The Table 2 has the test results of patterns recognition for values combinations of
environmental variables. This test was successful.
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Fig. 5 Performance in neural network training
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Table 2 Some tests of patterns recognition made by neural network.
Tempe- Salinity | Dissolved | pH Turbidity | Normal | Risk
rature(°’C) | (mg/l) oxygen (mg/1)
(mg/l)
33 15 15 9 35 -1 1
23 25 6 8.2 40 -1 1
32 20 53 7.5 38 -1 1
40 32 5.5 9.2 39 -1 1
30 25 9 7.8 41 -1 1
27 20 8 8.5 40 -1 1
28 31 4 7.8 17 -1 1
28 28 3 79 12 -1 1
28 23 3 8.9 15 -1 1
27 26 2 8.1 15 -1 1
28 31 3.2 7 11 -1 1
28 34 2.3 6.5 17 -1 1
28 32 2.2 8.5 18 -1 1
23 35 3 8 11 -1 1
33 34 9 9 48 -0.60357 0.87094
37 32 15 8.3 48 1 -0.99741
34 33 7.3 8 37 -1 1
37 35 72 8.7 24 -1 1
35 35 11 5 24 -1 1
35 33 15 8.5 18 -1 0.81304
35 31 15 7.8 17 -1 0.87243
34 28 15 79 12 -1 1
34 23 15 8.9 15 -1 1
35 26 15 8.1 15 -1 1
32 31 15 7 11 -1 1
33 34 15 6.5 17 -1 0.83643
33 32 15 8.5 18 -1 0.80734
30 35 15 8 11 -1 1
33 15 8 9 35 -1 0.86891
23 25 6 8.2 40 -1 0.76977
32 20 53 7.5 38 0.68359 -1
40 32 5.5 9.2 39 -1 1
30 25 9 7.8 4] 1 -0.99741
27 20 8 8.5 40 1 -0.99741

5. Analysis of results

The patterns classification given by the environmental variables confirms its
nonlinear interrelation. The pool state cannot be determined only by a environmental
variable, this is determined due to the variations of a set of them, therefore, a trained
feedforward neural network represent suitably the nonlinear relations between the
environmental variables.

Figures 6, 7, 8 and 9 were obtained using as reference the Table 2, and present four
examples of the variations of environmental variable of individual way in axis X,
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versus axis Y that presents the recognized state, by the neural network, using the

values of the set (pattern) of all environmental variables.

No any environmental variable by itself defines the state of the habitat, for
example, in Fig. 6, for a normal salinity of 24.5 mg/l, the neural network recognizes a
normal state; for a normal salinity of 23,5 mg/l the neural network recognizes a

moderate risky state.
The presented examples allow to understand the nonlinear relations between the

environmental variables. These nonlinear relations are represented suitably by
feedforward neural network.
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Fig. 6 Salinity variations and recognized habitat state
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Fig. 9 pH variations and recognized habitat state (normal: 7.6-8.6)

Conclusions and Future Work

In the shrimp aquaculture, it is difficult to maintain a similar water quality to natural
environmental conditions. This work allows to diagnose any problem early, being
able to make an opportune treatment and to obtain harvests of better quality.

The hypotheses were demonstrated: It is possible and necessary to establish
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patterns of environmental variables with nonlinear relationships to classify the
artificial habitat state of shrimp, and a feedforward neural network, with a linear
activation function for output neurons, allows to recognize and to quantify the shrimp
artificial habitat state.

A distributed system was designed and constructed for measurements of pH,
temperature and dissolved oxygen, which allows to collect data of the environmental
variables, of semi-automated way. This system can be extended with relatively
simple changes.

The developed diagnosis method allows to quantify the level of recognized habitat
state, presenting an indicator of how normal or risky it is. An algorithm was
developed that allows to establish the trend of habitat behavior.

The future work will be the diagnosis and prediction of artificial habitat state,
adapting methods that allow to predict which will be its evolution.
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